这个很简单的,找到规律就ok,楼主试看
f(x)=1/(1+x)那么
f(1/x)=1/(1+1/x)=x/(1+x)
所以
f(x)+f(1/x)=1/(1+x)+x/(1+x)
=1
所以[f(1)+f(2)+f(3)+f(4)+..+f(2009)]+[f(1/1)+f(1/2)+..+f(1/2009)]=2009
这个很简单的,找到规律就ok,楼主试看
f(x)=1/(1+x)那么
f(1/x)=1/(1+1/x)=x/(1+x)
所以
f(x)+f(1/x)=1/(1+x)+x/(1+x)
=1
所以[f(1)+f(2)+f(3)+f(4)+..+f(2009)]+[f(1/1)+f(1/2)+..+f(1/2009)]=2009