由∠a+∠b+∠c=180得:∠a=75°.
因为sin75°=sin(30°+45°)
=sin30°cos45°+cos30°sin45°
=(1/2)*(√2/2)+(√3/2)*(√2/2)
=√2/4+√6/4
=(√2+√6)/4
由正弦定理得:a/sinA=c/sinC
a/((√2+√6)/4)=6/(√3/2)
所以a=√6+3√2
所以bc=a=√6+3√2
由∠a+∠b+∠c=180得:∠a=75°.
因为sin75°=sin(30°+45°)
=sin30°cos45°+cos30°sin45°
=(1/2)*(√2/2)+(√3/2)*(√2/2)
=√2/4+√6/4
=(√2+√6)/4
由正弦定理得:a/sinA=c/sinC
a/((√2+√6)/4)=6/(√3/2)
所以a=√6+3√2
所以bc=a=√6+3√2