(1)由f(x+1)-f(x)=2x得,a*(x+1)^2+b(x+1)+c-a*x^2-bx-c=2x,即2ax+a+b=2x,由多项式恒等知,2a=2且a+b=0,故有 a=1,b=-1; 由f(0)=c=1知c=1 综上得,f(x)=x^2-x+1
(2)令g(x)=f(x)-2x=x^2-3x+1, 其对称轴为x=3/2,且抛物线开口向上,所以f(x)在区间[-1,1]上单调...
(1)由f(x+1)-f(x)=2x得,a*(x+1)^2+b(x+1)+c-a*x^2-bx-c=2x,即2ax+a+b=2x,由多项式恒等知,2a=2且a+b=0,故有 a=1,b=-1; 由f(0)=c=1知c=1 综上得,f(x)=x^2-x+1
(2)令g(x)=f(x)-2x=x^2-3x+1, 其对称轴为x=3/2,且抛物线开口向上,所以f(x)在区间[-1,1]上单调...