设∠ABC=@,
因△ABC中,∠ACB=90°,CD⊥AB,垂足为D,故∠ACD=∠ABC=@ ,且△CBD与△ACD相似,
=》COS(∠ACD)=COS@=(12/5)/3=4/5,
=>AD/DC=tg(∠ABC),=》AD=DC*tg@;
同理,=》BD=DC*ctg@;
设S△ACD=S1,则S1=1/2AD*DC=1/2(DC*tg@)*DC=1/2DC^2*tg@;
设S△CBD=S2,则S2=1/2BD*DC=1/2(DC*Ctg@)*DC=1/2DC^2*Ctg@;
故:S1/S2=1/2DC^2*tg@/1/2DC^2*Ctg@=tg@/Ctg@=(tg@)^2=(AD/DC)^2=AD^2/DC^2;
又依据勾股定理=》:AD^2=AC^2-CD^2,且已知AC=3、CD=12/5,
故=>:S1/S2=(AC^2-CD^2)/CD^2=AC^2/CD^2-1=[3^2]/[(12/5)^2]-1=(3*5/12)^2-1=25/16-1=9/16,即S2/S1=S△CBD:S△ACD=16:9