解题思路:(1)①作出△ABC的两边的中垂线的交点,即可确定圆心,则外接圆即可作出;
②D就是①中所作的圆与x轴的正半轴的交点,根据作图写出坐标即可;
(2)当以AB为弦的圆与x轴正半轴相切时,对应的∠APB最大,根据垂径定理和勾股定理即可求解.
(1)①
②根据图形可得,点D的坐标是(7,0);
(2)当以AB为弦的圆与x轴正半轴相切时,作CD⊥y轴,连接CP、CB.
∵A的坐标为(0,m),点B的坐标为(0,n),
∴D的坐标是(0,[m+n/2]),即BC=PC=[m+n/2],
在直角△BCD中,BC=[m+n/2],BD=[m−n/2],
则CD=
BC2−BD2=
mn,
则OP=CD=
mn,
故P的坐标是(
mn,0).
点评:
本题考点: 圆的综合题.
考点点评: 本题考查了垂径定理以及勾股定理,正确理解当以AB为弦的圆与x轴正半轴相切时,对应的∠APB最大,是关键.