∵f(x)=e^x/a+a/e^x是R上的偶函数
故f(-1)=f(1)
故1/ea+ea=e/a+a/e
∴a²=1
∵a>0
∴a=1
2.f(x)=e^x+1/e^x
求导得f'(x)=e^x-1/e^x
因为f'(x)>0时f(x)递增
故使f'(x)>0
解得x∈(0,+∞)
故f(x)在(0,+∞)上是增函数
∵f(x)=e^x/a+a/e^x是R上的偶函数
故f(-1)=f(1)
故1/ea+ea=e/a+a/e
∴a²=1
∵a>0
∴a=1
2.f(x)=e^x+1/e^x
求导得f'(x)=e^x-1/e^x
因为f'(x)>0时f(x)递增
故使f'(x)>0
解得x∈(0,+∞)
故f(x)在(0,+∞)上是增函数