将y=2x+1代入椭圆方程得:
x^2+2(2x+1)^2=4
展开整理得:
9x^2+8x-2=0
根据韦达定理可得:x1x2=-2/9,x1+x2=-8/9
设所截得的弦长为D,则有:
D^2=(x1-x2)^2+(y1-y2)^2
=(x1-x2)^2+(2x1+1-2x2-1)^2
=5(x1-x2)^2
=5[(x1+x2)^2-4x1x2]
=5(64/81+8/9)
=680/81
所以可得:D=2√170/9
将y=2x+1代入椭圆方程得:
x^2+2(2x+1)^2=4
展开整理得:
9x^2+8x-2=0
根据韦达定理可得:x1x2=-2/9,x1+x2=-8/9
设所截得的弦长为D,则有:
D^2=(x1-x2)^2+(y1-y2)^2
=(x1-x2)^2+(2x1+1-2x2-1)^2
=5(x1-x2)^2
=5[(x1+x2)^2-4x1x2]
=5(64/81+8/9)
=680/81
所以可得:D=2√170/9