Let w=1/x+1/y+1/z. Then the given condition is w^3=w. So w=0 or 1 or -1. Since xyz>0, we have w>0. Hence w=1. This completes the proof.
求教初二数学难题已知:(1/x+1/y+1/z)^(1/3)=1/x+1/y+1/z,且xyz>0,求证:1/x+1/y
1个回答
相关问题
-
已知xyz属于R+,x+y+z=1,求证x^3/(y(1-y))+y^3/(z(1-z))+z^3/(x(1-x))大于
-
已知2^x=3^y=6^z,xyz不等于0,求证:(1/x)+(1/y)+(1/z)=0……
-
已知x+y+z=1,xy+yz+zx=xyz,求证:(1-x)(x+yz)=0 ,(1-y)(y+zx)=0,(1-z)
-
x,y,z都是正数,且xyz=1,求证:(1+x+y)(1+y+z)(1+z+z)≥27.
-
已知 x+y+z=3 求证(x-1)^3+(y-1)^3+(z-1)^3-3(x-1)(y-1)(z-1)=0
-
(1)已知:x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)+3=0,且1/x+1/y+1/z不等于0,
-
已知x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)+3=0,且1/x+1/y+1/z不等于0,求x+y
-
已知x+1/y=y+1/z=z+1/x,求证y/x+z/y+x/z=3
-
若x+y+z=0且xyz不等于0,求x(1/y+1/z)+y(1/x+1/z)+z(1/x+1/y)的值
-
【初二数学题】已知xyz=1,x+y+z=2,x²+y²+z²=16,求1/(xy+2z)