lim(x→0)(1-cosx)/(xsinx)=?
4个回答
lim(x→0)(1-cosx)/(xsinx)
=lim(x→0)(1-(1-2(sin x/2)^2)/(xsinx)
=(1-(1-2*x^2*(1/2)^2))/x^2
=1/2
相关问题
1-√cosx/xsinx 求Lim X趋向于0
y=lim (x → 0) ( √1+xsinx - √cosx) / arcsin^2x
lim(e^x-cosx)/xsinx x趋向0
求极限:lim(x→0)(sinx)^2/[√(1+xsinx)-√(cosx)]
lim e-e^cosx除以xsinx x趋向0
求极限~lim(x→0)[(1+xsinx)^1/2-cosx]/sin^2(x/2)
0 lim√(1+xsinx)-cosx/(e的x次方-1)tan(x/2)
lim(x→0) sinx-x(x+1)/xsinx
lim(x→0)(1-cos4x)/xsinx
证明:Lim (1/xsinx-xsin1/x) =1 x→0