∫arctan√xdx
=∫arctan√xd(x+1) 利用分部积分公式
=(x+1)arctan√x - ∫(x+1)darctan√x
=(x+1)arctan√x - ∫(x+1)*[1/(1+(√x)^2)]d√x
=(x+1)arctan√x - ∫d√x
=(x+1)arctan√x - √x + C
∫arctan√xdx
=∫arctan√xd(x+1) 利用分部积分公式
=(x+1)arctan√x - ∫(x+1)darctan√x
=(x+1)arctan√x - ∫(x+1)*[1/(1+(√x)^2)]d√x
=(x+1)arctan√x - ∫d√x
=(x+1)arctan√x - √x + C