(Ⅰ)∵f(x)= co s 2 (x-
π
6 ) -sin 2x,
∴f(
π
12 )= co s 2 (-
π
12 ) - sin 2
π
12 =cos
π
6 =
3
2 .…(5分)
(Ⅱ)∵f(x)= co s 2 (x-
π
6 ) -sin 2x
=
1
2 [1+cos(2x-
π
3 )]-
1
2 (1-cos2x)
=
1
2 [cos(2x-
π
3 )+cos2x]
=
1
2 (
3
2 sin2x+
3
2 cos2x)
=
3
2 sin(2x+
π
3 ),.…(9分)
∵x∈[0,
π
2 ],
∴2x+
π
3 ∈[
π
3 ,
4π
3 ],
∴当2x+
π
3 =
π
2 ,即x=
π
12 时,f(x)取得最大值
3
2 .…(12分)