求下列函数的的单调区间和极值点1)y=tanx-sinx 2)y=x+sinx
0恒成立,即函数单调递增"}}}'>

1个回答

  • 1)y=tanx-sinx

    y'=sec²x-cosx=(1-cos³x)/cos²x

    ∵-1≤cosx≤1,cosx≠0

    ∴y'>0恒成立,即函数单调递增

    令y=0,有1-cos³x=0,即1-cosx=0,cosx=1

    ∴极值点为x=2kπ,k∈Z

    2)y=x+sinx

    y'=1+cosx

    ∵-1≤cosx≤1

    ∴y'≥0恒成立,即函数单调递增

    令y=0,有1+cosx=0,cosx=-1

    ∴极值点为x=π+2kπ,k∈Z

    3)y=sinx+cosx=√2sin(x+π/4)

    y'=√2cos(x+π/4)

    当y'≥0时,有-π/2+2kπ≤x+π/4≤π/2+2kπ,即-3π/4+2kπ≤x≤π/4+2kπ

    ∴单调递增区间为x∈[-3π/4+2kπ,π/4+2kπ]

    当y'≤0时,有π/2+2kπ≤x+π/4≤3π/2+2kπ,即π/4+2kπ≤x≤5π/4+2kπ

    ∴单调递减区间为x∈[π/4+2kπ,5π/4+2kπ]

    令y=0,可得cos(x+π/4),即x+π/4=π/2+kπ,k∈Z

    ∴极值点为x=π/4+kπ,k∈Z