(1) c=4,a=5
b=3
椭圆方程
x^2/5^2+y^2/3^2=1
(2)D点在线段AB的中垂线上
线段AB中点M坐标为 ( (x_1+x_2)/2,(y_1+y_2)/2 )
中垂线的与AB垂直,斜率k满足
k *(y_1-y_2)/(x_1-x_2)=-1
由此得到中垂线方成为
y=-(x_1-x_2)/(y_1-y_2) * { x-(x_1+x_2)/2}+(y_1+y_2)/2
它与x轴交点为
x_D= (x_1+x_2)/2+(y_1+y_2)/2 * (y_1-y_2)/(x_1-x_2)
= (x_1+x_2)/2+{(y_1)^2-(y_2)^2 }/ {2 (x_1-x_2)}
考虑到A和B均为椭圆上的点满足
(x_1)^2/5^2+(y_1)^2/3^2=1
(x_2)^2/5^2+(y_2)^2/3^2=1
两式相减得到
{ (x_1)^2-(x_2)^2}/5^2+{(y_1)^2-(y_2)^2} /3^2=0
所以
{(y_1)^2-(y_2)^2} =-3^2/5^2 *{ (x_1)^2-(x_2)^2}
带入前面的式子
x_D= (x_1+x_2)/2+{(y_1)^2-(y_2)^2 }/ {2 (x_1-x_2)}
= (x_1+x_2)/2-3^2/5^2 *{ (x_1)^2-(x_2)^2}/{2 (x_1-x_2)}
=(x_1+x_2)/2-3^2/5^2 *{ (x_1)+(x_2)}/2
=64/25