f"(x)=[f'(x)]'=2f(x)*f'(x)=2[f(x)]^3
则三阶导数=6[f(x)]^2*f'(x)=6[f(x)]^4
n阶导数=n!*[f(x)]^(n+1)
所以
f(x)求n阶导后x=0的值=n!*[f(0)]^(n+1)=n!
f"(x)=[f'(x)]'=2f(x)*f'(x)=2[f(x)]^3
则三阶导数=6[f(x)]^2*f'(x)=6[f(x)]^4
n阶导数=n!*[f(x)]^(n+1)
所以
f(x)求n阶导后x=0的值=n!*[f(0)]^(n+1)=n!