1、(2b-c)cosA-acosC=0
由正弦定理b/sinB=a/sinA=c/sinC=2R
b=2RsinB
a=2RsinA
c=2RsinC
(2b-c)cosA-acosC=0
2R(2sinB-sinC)cosA-2RsinAcosC=0
(2sinB-sinC)cosA-sinAcosC=0
2sinBcosA-sinCcosA-sinAcosC=0
2sinBcosA-(sinCcosA+sinAcosC)=0
2sinBcosA-sin(A+C)=0,
2sinBcosA-sin(180-B)=0,
所以:2sinBcosA-sinB=0,
因为:A、B∈(0,π),sinB≠0
所以:cosA=1/2,
所以:A=60度
2、sin^2 B+sin^2 C=p^2 sin^2 A
p^2=(sin^2 B+sin^2 C)/0.75
=(sin^2(120-C)+sin^2 C)/0.75
=(5-cos2C-根号3的sin2C)/3 (C在0到120之间)
=【5-2sin(2C+30°)】/3
∴P^2∈【1,7/3)
∴P∈【1,根号21 /3)