f'(x)=3x^2+6ax+3-6a
切线斜率是k=f'(0)=3-6a
方程是y-(12a-4)=(3-6a)x
方程中令x=2,得y=2
故此切线恒过点(2,2)
(2)令f'(x)=3x^2+6ax+3-6a=0
x=x1处有极小值,故有f'(x1)=0且在x=x1左右的导数是左负右正
∵x1∈(1,3)
故有f'(1)
f'(x)=3x^2+6ax+3-6a
切线斜率是k=f'(0)=3-6a
方程是y-(12a-4)=(3-6a)x
方程中令x=2,得y=2
故此切线恒过点(2,2)
(2)令f'(x)=3x^2+6ax+3-6a=0
x=x1处有极小值,故有f'(x1)=0且在x=x1左右的导数是左负右正
∵x1∈(1,3)
故有f'(1)