y'=(x+y)/(x-y)
xy'-yy'=x+y
x+yy'=xy'-y
两边求导
1+yy''+y'y'=y'+xy''-y'
1+yy''+y'y'=xy''
1+y'y'=(x-y)y''
y''=(1+y'y')/(x-y)
将y'=(x+y)/(x-y)代入
得
y''=(1+(x+y)^2/(x-y)^2)/(x-y)
=((x-y)^2+(x+y)^2)/(x-y)^3
=2(x^2+y^2)/(x-y)^3
y'=(x+y)/(x-y)
xy'-yy'=x+y
x+yy'=xy'-y
两边求导
1+yy''+y'y'=y'+xy''-y'
1+yy''+y'y'=xy''
1+y'y'=(x-y)y''
y''=(1+y'y')/(x-y)
将y'=(x+y)/(x-y)代入
得
y''=(1+(x+y)^2/(x-y)^2)/(x-y)
=((x-y)^2+(x+y)^2)/(x-y)^3
=2(x^2+y^2)/(x-y)^3