(1)∵ S n =(
a n +1
2 ) 2 ,
∴ S n-1 =(
a n-1 +1
2 ) 2 ,n≥2 ,
两式相减得 a n =(
a n +1
2 ) 2 -(
a n-1 +1
2 ) 2 ,n≥2 ,…(2分)
整理得(a n+a n-1)(a n-a n-1-2)=0,
∵数列{a n}的各项均为正数,
∴a n-a n-1=2,n≥2,∴{a n}是公差为2的等差数列,…(4分)
又 S 1 =(
a 1 +1
2 ) 2 得a 1=1,∴a n=2n-1.…(5分)
(2)由题意得 k>(
1
a 1 a 2 +
1
a 2 a 3 +…+
1
a n a n+1 ) max ,
∵
1
a n a n+1 =
1
(2n-1)(2n+1) =
1
2 (
1
2n-1 -
1
2n+1 ) ,
∴
1
a 1 a 2 +
1
a 2 a 3 +…+
1
a n a n+1 =
1
2 [(1-
1
3 )+(
1
3 -
1
5 )+…+(
1
2n-1 -
1
2n+1 )]
=
1
2 (1-
1
2n+1 )<
1
2 …(8分)∴ k≥
1
2 …(10分)
(3)对任意m∈N +,2 m<2n-1<2 2m,则 2 m-1 +
1
2 <n< 2 2m-1 +
1
2 ,
而n∈N*,由题意可知 b m = 2 2m-1 - 2 m-1 ,…(12分)
于是 S m = b 1 + b 2 +…+ b m = 2 1 + 2 3 +…+ 2 2m-1 -( 2 0 + 2 1 +…+ 2 m-1 )
=
2- 2 2m+1
1- 2 2 -
1- 2 m
1-2 =
2 2m+1 -2
3 -( 2 m -1)=
2 2m+1 -3• 2 m +1
3 ,
即 S m =
2 2m+1 -3• 2 m +1
3 .…(16分)