各项均为正数的数列{a n }中,前n项和 S n =( a n +1 2 ) 2 .

1个回答

  • (1)∵ S n =(

    a n +1

    2 ) 2 ,

    ∴ S n-1 =(

    a n-1 +1

    2 ) 2 ,n≥2 ,

    两式相减得 a n =(

    a n +1

    2 ) 2 -(

    a n-1 +1

    2 ) 2 ,n≥2 ,…(2分)

    整理得(a n+a n-1)(a n-a n-1-2)=0,

    ∵数列{a n}的各项均为正数,

    ∴a n-a n-1=2,n≥2,∴{a n}是公差为2的等差数列,…(4分)

    又 S 1 =(

    a 1 +1

    2 ) 2 得a 1=1,∴a n=2n-1.…(5分)

    (2)由题意得 k>(

    1

    a 1 a 2 +

    1

    a 2 a 3 +…+

    1

    a n a n+1 ) max ,

    1

    a n a n+1 =

    1

    (2n-1)(2n+1) =

    1

    2 (

    1

    2n-1 -

    1

    2n+1 ) ,

    1

    a 1 a 2 +

    1

    a 2 a 3 +…+

    1

    a n a n+1 =

    1

    2 [(1-

    1

    3 )+(

    1

    3 -

    1

    5 )+…+(

    1

    2n-1 -

    1

    2n+1 )]

    =

    1

    2 (1-

    1

    2n+1 )<

    1

    2 …(8分)∴ k≥

    1

    2 …(10分)

    (3)对任意m∈N +,2 m<2n-1<2 2m,则 2 m-1 +

    1

    2 <n< 2 2m-1 +

    1

    2 ,

    而n∈N*,由题意可知 b m = 2 2m-1 - 2 m-1 ,…(12分)

    于是 S m = b 1 + b 2 +…+ b m = 2 1 + 2 3 +…+ 2 2m-1 -( 2 0 + 2 1 +…+ 2 m-1 )

    =

    2- 2 2m+1

    1- 2 2 -

    1- 2 m

    1-2 =

    2 2m+1 -2

    3 -( 2 m -1)=

    2 2m+1 -3• 2 m +1

    3 ,

    即 S m =

    2 2m+1 -3• 2 m +1

    3 .…(16分)