设f(t)=1+tln[t+√(1+t^2)]-√(1+t^2),
则易求得
f'(t)=1+ln[t+√(1+t^2)],
f"(t)=[1+1/√(1+t^2)]/[t+√(1+t)].
显然,当t>0时,有f"(t)>0,
故f'(t)为单调递增函数,
∴f'(t)>f'(0)=1>0,
故f(t)也为单调递增函数.
从而,x>0时,有f(x)>f(0)=0,
∴1+xln[x+√(1+x^2)]-√(1+x^2)>0,
即1+xln[x+√(1+x^2)]>√(1+x^2).
故原不等式得证.