证明:(1)由题意得:BC=AD,∠BFC=∠DHA=90°,
∴∠BCF=∠ABF=∠BAE=∠DAH,
∴∠FBC=∠HDA,
∴△ADH≌△CBF(ASA);
∴BF=DH,
∵AE⊥MN,DG⊥MN,AH⊥DG,
∴四边形AEGH为矩形,故AE=GH,
DG=DH+HG=AE+BF.
(2)DG ∥ BF ∥ AE且AE=DG+BF.
过点D作DH⊥AE于点H,
∵AD=BC,∠BCF=∠EIC=∠ADH,∠AHD=∠BFC=90°,
∴△ADH≌△BCF(ASA).
∴AH=BF,
又四边形DHEG为矩形,
∴HE=DG,
∴AE=AH+HE=DG+BF.得证.