设{an}的公差为d,则
bn=1/(√an+√an+1)=(-√an+√an+1)/[(-√an+√an+1)(√an+√an+1)]=[-√an+√a(n+1)]/d
因此b1+b2+..bn=[-√a1+√a2-√a2+√a3+..-√an+√a(n+1)]/d=[√a(n+1)-√a1]/d
设{an}的公差为d,则
bn=1/(√an+√an+1)=(-√an+√an+1)/[(-√an+√an+1)(√an+√an+1)]=[-√an+√a(n+1)]/d
因此b1+b2+..bn=[-√a1+√a2-√a2+√a3+..-√an+√a(n+1)]/d=[√a(n+1)-√a1]/d