在原点的偏导数不存在
这是分块函数,原点刚好在分界点,在此处的对偏导数只能用定义来求,为
lim(x->0)[f(x,0)-f(0,0)]/(x-0)
=lim(x->0)[0-1]/x=无穷大
即它是不存在的
你的问题在于:将分段函数与常函数的概念弄混淆了,照你的推理,对于任一函数,比如f(x,y)=x+y+1,因f(0,0)=1,则会得到f'x(0,0)=0,这显然是错误的.
如果还有问题欢迎留言讨论
在原点的偏导数不存在
这是分块函数,原点刚好在分界点,在此处的对偏导数只能用定义来求,为
lim(x->0)[f(x,0)-f(0,0)]/(x-0)
=lim(x->0)[0-1]/x=无穷大
即它是不存在的
你的问题在于:将分段函数与常函数的概念弄混淆了,照你的推理,对于任一函数,比如f(x,y)=x+y+1,因f(0,0)=1,则会得到f'x(0,0)=0,这显然是错误的.
如果还有问题欢迎留言讨论