g(x)=∫(a~x)f(t)dt-∫(x~b)f(t)dt,显然g(x)在[ a,b ]连续
g(a)=-∫(a~b)f(t)dt,g(b)=∫(a~b)f(t)dt,
(1)若∫(a~b)f(t)dt=0,则可取c=a或c=b
(2)若∫(a~b)f(t)dt≠0,则g(a)g(b)
g(x)=∫(a~x)f(t)dt-∫(x~b)f(t)dt,显然g(x)在[ a,b ]连续
g(a)=-∫(a~b)f(t)dt,g(b)=∫(a~b)f(t)dt,
(1)若∫(a~b)f(t)dt=0,则可取c=a或c=b
(2)若∫(a~b)f(t)dt≠0,则g(a)g(b)