tanβ= 2*tan(β/2)/[1-tan²(β/2)]
=2*1/2/[1-(1/2)²]
=1/(3/4)
=4/3
β属于(0,π)
sinβ=4/5
cosβ=3/5
ab=5/13
cosαsinβ+sinαcosβ=ab
cosαsinβ+sinαcosβ=5/13
sin(α+β)=5/13
cos(α+β)=±12/13
当cos(α+β)=12/13时
sinα
=sin[(α+β)-β]
=sin(α+β)cosβ-cos(α+β)sinβ
=5/13*3/5-12/13*4/5
=15/64-48/65
=-33/65
当cos(α+β)=-12/13时
sinα
=sin[(α+β)-β]
=sin(α+β)cosβ-cos(α+β)sinβ
=5/13*3/5-(-12/13)*4/5
=15/64+48/65
=63/65