(1)方程的两个实根为 X1=5 X2=9 因为 数列an的公差大于0,所以a3=5 a5=9→ 公差d=2
则a1=1→ an=2n-1
(2) 由(1)得 bn=2n+1/2^n 令Tn=2+4+6+8+……+an+1/2+1/4+1/8+……+1/2^n……①
则 1/2Tn=1+2+3+4+……+1/2an+1/4+1/8+1/16+ ……+1/^2(n+1)……②
则 ①-② 得 Tn=1+2+3+4……+1/2an+1/4+1/8+1/16+ ……+1/^2(n+1)
令 Sn=1+2+3+4……+1/2an =n(n+1)/2 Cn=1/4+1/8+1/16+……+1/^2(n+1)
→Cn=1/2(1-1/2^n) 得Tn=Sn+Cn =1/2 [1-1/2^n+n(n+1)]