解 方程变形为
x^2-(m+2)x-p2+p(m+2)=0,
(1)依韦达定理,应有
a+b = m+2,ab = p(m+2)-p^2,…,
可解得a=p,b=m+2-p.
(2)若a,b是某直角三角形的两直角边的长,则仅当a = b,即p = m+2-p,或p = (m+2)/2时,其面积
S =ab/2 = p(m+2-p)/2
最大.
解 方程变形为
x^2-(m+2)x-p2+p(m+2)=0,
(1)依韦达定理,应有
a+b = m+2,ab = p(m+2)-p^2,…,
可解得a=p,b=m+2-p.
(2)若a,b是某直角三角形的两直角边的长,则仅当a = b,即p = m+2-p,或p = (m+2)/2时,其面积
S =ab/2 = p(m+2-p)/2
最大.