设x+1/x=t,平方得:x^2+1/x^2+2=t^2
x^2+1/x^2=t^2-2
原方程变为:
(t^2-2)-3t-8=0
t^2-3t-10=0
(t-5)(t+2)=0
t=5或t=-2.
即x+1/x=5或-2