∫(0,3)ln(x²+1)dx
=xln(x²+1)|(0,3)-∫(0,3)xdln(x²+1)
=3ln10-∫(0,3)2x²/(x²+1)dx
=3ln10-2∫(0,3)(x²+1-1)/(x²+1)dx
=3ln10-2∫(0,3)[1-1/(x²+1)]dx
=3ln10-2∫(0,3)dx+2∫(0,3)1/(x²+1)dx
=3ln10-6+2arctan3.
∫(0,3)ln(x²+1)dx
=xln(x²+1)|(0,3)-∫(0,3)xdln(x²+1)
=3ln10-∫(0,3)2x²/(x²+1)dx
=3ln10-2∫(0,3)(x²+1-1)/(x²+1)dx
=3ln10-2∫(0,3)[1-1/(x²+1)]dx
=3ln10-2∫(0,3)dx+2∫(0,3)1/(x²+1)dx
=3ln10-6+2arctan3.