f(x)=(3/2)sin wx+(3√3/2)cos wx +1
=3sin(wx+π/3)+1,
周期2π/w=π,∴w=2,
由f(x)=0得sin(2x+π/3)=-1/3,
2x+π/3=2kπ-arcsin(1/3),或(2k+1)π+arcsin(1/3),
a,b 是方程f(x)=0的两个根,a ≠k π+b (k ∈z ) ,
∴2a+π/3+2b+π/3=(4k+1)π,
∴a+b=(2k+1/6)π,
∴tan(a+b)=√3/3.
f(x)=(3/2)sin wx+(3√3/2)cos wx +1
=3sin(wx+π/3)+1,
周期2π/w=π,∴w=2,
由f(x)=0得sin(2x+π/3)=-1/3,
2x+π/3=2kπ-arcsin(1/3),或(2k+1)π+arcsin(1/3),
a,b 是方程f(x)=0的两个根,a ≠k π+b (k ∈z ) ,
∴2a+π/3+2b+π/3=(4k+1)π,
∴a+b=(2k+1/6)π,
∴tan(a+b)=√3/3.