(1)∵a=(2sin(π/4-x),cosx)
b=(cos(π/4-x),2√3sinx)
∴f(x)=2sin(π/4-x) * cos(π/4-x) + cosx * 2√3sinx
=sin[2(π/4-x)]+2√3sinxcosx
=sin(π/2-2x) + 2√3sinxcosx
=cos2x + √3sin2x
=2sin(2x+π/6)
∵T=2π / |w|
∴T=2π / 2=π
∵sin(2x+π/6)∈[-1,1]
∴f(x)∈[-2,2]
∴f(x)最小值= -2
(2)∵由f(x)=2sin(2x+π/6)到y=2sin2x
要将 x 向左移动 π/12,而y不变
∴m=(π/12,0)
应该没出错,若有问题请追问,谢谢~~