解一元四次方程,要过程x^4+2x^3+x^2-1=0

2个回答

  • x ^ 4 + 2 x ³ + x ² - 1 = 0

    x ²(x ² + 2 x + 1)- 1 = 0

    x ²(x + 1)² - 1 = 0

    【 x(x + 1)+ 1】【 x(x + 1)- 1 】= 0

    (x ² + x + 1)(x ² + x - 1)= 0

    ∴ x ² + x + 1 = 0 ①

    x ² + x - 1 = 0 ②

    ① x ² + x = - 1

    x ² + x + (1 / 2)² = - 1 + (1 / 2)²

    (x + 1 / 2)² = - 1 + 1 / 4

    (x + 1 / 2)² = - 3 / 4

    ∵ (x + 1 / 2)² ≥ 0

    ∴ ① 方程无解.

    ② x ² + x = 1

    x ² + x + (1 / 2)² = 1 + (1 / 2)²

    (x + 1 / 2)² = 1 + 1 / 4

    (x + 1 / 2)² = 5 / 4

    x + 1 / 2 = ± √5 / 2

    x = ± √5 / 2 - 1 / 2

    x1 = √5 / 2 - 1 / 2 = (√5 - 1)/ 2

    x2 = - √5 / 2 - 1 / 2 = (- √5 - 1)/ 2

    综上,x = (√5 - 1)/ 2 或 (- √5 - 1)/ 2

    参考公式:(平方差公式:a ² - b ² = (a + b)(a - b))