如图所示①,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O 是AC边上一点,连结BO交AD于点F,OE⊥OB

1个回答

  • (1)证明:∵AD⊥BC,∴∠DAC+∠C=90°,

    ∵∠BAC=90°,∴∠BAF=∠C,

    ∵OE⊥0B,∴∠BOA+∠COE=90°,

    ∵∠BOA+∠ABF=90°,∴∠ABF=∠COE,

    ∴△ABF∽△COE;

    (2)作CG⊥AC,交AD的延长线于G,

    ∵AC=2AB,

    O是AC边的中点,∵AB=OC= OA,

    由(1)有△ABF∽△COE,

    ∴△ABF≌△COE,∴BF=OE,

    ∵∠BAD十∠DAC=90°,∠DAB +∠ABD=90°,

    ∴∠DAC=∠ABD,

    又∠BAC=∠AOG=90°,AB=OA,

    ∴△ABC≌△OAG

    ∵OG=AC=2AB,

    ∵OG⊥OA,

    ∴AB∥CG,

    ∴△ABF∽△GOF,

    (3)