设f(x)=[(sinx)^2]*[1+ln(x+根号(1+x^2))]
f(-x)=[(sinx)^2]*[1+ln(-x+根号(1+x^2))]
=[(sinx)^2]*[1+ln(1/(x+根号(1+x^2)))]
=-[(sinx)^2]*[1+ln(x+根号(1+x^2))]
故f(x)是奇函数,积分区间是对称区间,故
∫(上π/3 下-π/3) [(sinx)^2]*[1+ln(x+根号(1+x^2))]=0
设f(x)=[(sinx)^2]*[1+ln(x+根号(1+x^2))]
f(-x)=[(sinx)^2]*[1+ln(-x+根号(1+x^2))]
=[(sinx)^2]*[1+ln(1/(x+根号(1+x^2)))]
=-[(sinx)^2]*[1+ln(x+根号(1+x^2))]
故f(x)是奇函数,积分区间是对称区间,故
∫(上π/3 下-π/3) [(sinx)^2]*[1+ln(x+根号(1+x^2))]=0