已知:P(AUBUC)=P(A)+P(B)+P(C)- P(AB)- P(AC)- P(BC) +P(ABC).
对于本题,P(ABC)=0,P(AB)=P(A)*P(B) ,P(AC) = P(A)P(C),P(BC)= P(B)*P(C)
有:P(AUBUC)=P(A)+P(B)+P(C)- P(A)P(B)- P(A)P(C)- P(B)P(C)
再由:P(A)=P(B)=P(C).及P(AUBUC)=9/16,得
3P(C)- 3[P(C)]^2 = 9/16.记P(C)=x,即有方程式:3x^2-3x+9/16 =0
或:x^2 -x +3/16=0.解得:
x1=[1-1/2]/2=1/4,x2= [1+1/2]/2=3/4.由于假设P(C)