A(n+1)=1/3A(n)+(1/2)^(n+1)
A(n+1)-(1/2)^(n+1)=1/3A(n)
设A(n+1)-(1/2)^(n+1)=B(n+1),则B(n+1)=1/3A(n)为等比数列
其通项为B(n)=A(1)*q^(n-1)=(5/6)*(1/3)^(n-1)
所以,A(n)=(5/6)*(1/3)^(n-1)+(1/2)^n
A(n+1)=1/3A(n)+(1/2)^(n+1)
A(n+1)-(1/2)^(n+1)=1/3A(n)
设A(n+1)-(1/2)^(n+1)=B(n+1),则B(n+1)=1/3A(n)为等比数列
其通项为B(n)=A(1)*q^(n-1)=(5/6)*(1/3)^(n-1)
所以,A(n)=(5/6)*(1/3)^(n-1)+(1/2)^n