过D作DG⊥BC交BC于G.
∵AD∥BG、AD⊥AB、DG⊥BG,∴ABGD是矩形,又AB=AD,∴矩形ABGD是正方形,
∴AD=GD、∠ADG=∠DGC=90°,∴∠ADE+∠EDG=∠EDG+∠GDC,
∴∠ADE=∠GDC,∴△ADE≌△GDC,∴∠DE=DC,又DF=DF、∠EDF=∠CDF,
∴△EDF≌△CDF,∴EF=CF.
过D作DG⊥BC交BC于G.
∵AD∥BG、AD⊥AB、DG⊥BG,∴ABGD是矩形,又AB=AD,∴矩形ABGD是正方形,
∴AD=GD、∠ADG=∠DGC=90°,∴∠ADE+∠EDG=∠EDG+∠GDC,
∴∠ADE=∠GDC,∴△ADE≌△GDC,∴∠DE=DC,又DF=DF、∠EDF=∠CDF,
∴△EDF≌△CDF,∴EF=CF.