计算:1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+...+99+100

1个回答

  • 设an=1/(1+2+…+n),n为正整数

    又1+2+…+n=n*(n+1)/2

    所以,an=1/(1+2+…+n)= 2/ n*(n+1)=2*(1/n-1/(n+1))

    因此

    1+1/(1+2)+ 1/(1+2+3) +…+1/(1+2+…+100)

    = a1 +a2 +…+a100

    =2*(1/1-1/(1+1))+2*(1/2-1/(2+1))+…+2*(1/100-1/(100+1))

    整理

    =2*(1-1/2+1/2-1/3+…+1/100-1/101)

    =2*(1-1/101)

    =200/101

    2.an=n(n+1)/2 bn=1/an=2/n(n+1)=2[1/n -1/n+1]

    Sn=2(1-1/2+1/2-1/3+1/3-1/4+...+1/n-1/n+1)

    =2(1-1/n+1)

    =2-2/n+1

    所以S100=2-2/101=200/101