由3sinα=-cosα知tanα=-1/3
〔2(sinα)^2+3(cosα)^2〕/〔(sinα)^2+sinαcosα〕
=〔2(tanα)^2+3〕/〔(tanα)^2+tanα〕
=(2(-1/3)^2+3)/((-1/3)^2-1/3)
=(29/9)/(-2/9)=-29/2
由3sinα=-cosα知tanα=-1/3
〔2(sinα)^2+3(cosα)^2〕/〔(sinα)^2+sinαcosα〕
=〔2(tanα)^2+3〕/〔(tanα)^2+tanα〕
=(2(-1/3)^2+3)/((-1/3)^2-1/3)
=(29/9)/(-2/9)=-29/2