因,a(n+1)=f(an)=an/(an+1)
则a(n+1)*an+a(n+1)=an
则an-a(n+1)=a(n+1)*an
两边同时除以a(n+1)*an
得1/a(n+1)-1/an=1
则{1/an}是首项为1/1=1,公差为1的等差数列
则
1/an=1+(n-1)*1=n
则an=1/n
则{an}的通项公式是an=1/n
因,a(n+1)=f(an)=an/(an+1)
则a(n+1)*an+a(n+1)=an
则an-a(n+1)=a(n+1)*an
两边同时除以a(n+1)*an
得1/a(n+1)-1/an=1
则{1/an}是首项为1/1=1,公差为1的等差数列
则
1/an=1+(n-1)*1=n
则an=1/n
则{an}的通项公式是an=1/n