证明:作AE垂直于BC
∵AB=AC
∴BE=CE
在三角形ABE中有:AB^2=BE^2+AE^2
在三角形ADE中有:AD^2=AE^2+DE^2
又DE=CE+CD
∴AD^2=(AB^2-BE^2)+(CE+CD)^2=AB^2-BE^2+CE^2+2CE*CD+CD^2
=AB^2+2CE*CD+CD^2,(∵BE=CE)
=AB^2+CD(2CE+CD)
=AB^2+CD(BC+CD),(∵2CE=BC)
=AB^2+CD*BD
∴AD^2-AB^2=CD*BD
证明:作AE垂直于BC
∵AB=AC
∴BE=CE
在三角形ABE中有:AB^2=BE^2+AE^2
在三角形ADE中有:AD^2=AE^2+DE^2
又DE=CE+CD
∴AD^2=(AB^2-BE^2)+(CE+CD)^2=AB^2-BE^2+CE^2+2CE*CD+CD^2
=AB^2+2CE*CD+CD^2,(∵BE=CE)
=AB^2+CD(2CE+CD)
=AB^2+CD(BC+CD),(∵2CE=BC)
=AB^2+CD*BD
∴AD^2-AB^2=CD*BD