解题思路:由EB=EC,根据等腰三角形的性质得到∠EBD=∠ECD,而∠ABE=∠ACE,则∠ABC=∠ACB,根据等腰三角形的判定得AB=AC,有EB=EC,AE为公共边,根据全等三角形的判定易得△ABE≌△ACE,由全等的性质即可得到结论.
证明:∵EB=EC,
∴∠EBD=∠ECD,
又∵∠ABE=∠ACE,
∴∠ABC=∠ACB,
∴AB=AC,
在△ABE和△ACE中
AB=AC
EB=EC
AE=AE
∴△ABE≌△ACE,
∴∠BAE=∠CAE.
点评:
本题考点: 全等三角形的判定与性质;等腰三角形的判定与性质.
考点点评: 本题考查了全等三角形的判定与性质:三条边对应相等的两个三角形全等;全等三角形的对应角相等.也考查了等腰三角形的判定与性质.