一条简单的函数连续和极限问题设函数f(x)、g(x)在区间[a,b]上连续,且f(a)>g(a),f(b)
2个回答
令h(x)=f(x)-g(x)
h(a)>0 h(b)
相关问题
证明若函数f(x)和g(x)在区间[a,b]上连续,且f(a)
一个高数问题1.设函数 f(x)和g(x) 在闭区间 [a,b]上连续,在开区间(a,b) 内可导,且f(a)=f(b)
设函数f(x)和g(x)在区间[a,b]上连续,且g(x)≠0,x∈[a,b],证明:至少存在一点ξ∈(a,b),使得:
设函数f(x)在[a,b]上连续,g(x)= ∫[a,x]f(t)dt,则()
证明 若函数f(x)与g(x)在[a,b]连续且f(a)g(b)则f(c)=g(c)
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,g(x)
设函数f(x)在[a,b]上连续,且a
(1/2)设f(x),g(x)都在区间[a,b]上连续,在开区间(a,b)内可导,且g(x)不等于0,f(a)g(b)=
设函数f(x)在区间[a,b]上连续,在(a,b)内可导且f'(x)≤0,F(X)=1\(x-a)·∫<a,x>f(t)