设函数f(x)=x/(2x+1),若数列{an}满足关系式an=f(a(n-1)),(且n>2),又a1=-1/2011

1个回答

  • 如果题目的条件改成n>=2的话,可以做,因为若是n>2,那么给出的首项a1就用不上,就算不出an的通项公式.

    做法如下:

    数列{an}满足关系式an=f(a(n-1)),将an代入函数得到an=a(n-1)/[2a(n-1)+1],

    上下同时除以a(n-1)得到an=1/[2+1/a(n-1)],

    等号两边同时取倒数得到1/an=2+1/a(n-1),n>=2.

    那么数列{1/an}就是首项为-2011,公差为2的等差数列.

    因此1/an=1/a1+2*(n-1)=2n-2013,n>=1.

    所以通项an=1/(2n-2013),n>=1.

    第二问:

    设bn=an/a(n-1)=(2n-2015)/(2n-2013)=1-2/(2n-2013),

    根据观察可以看到,当分母2n-20130时,bn是小于1且单调递增的数列,

    所以bn的最大值在转折点左边的最大值,最小值在转折点右边的最小值,

    因此bn的最大值当n=1006即2n=2012时取得,此时bn=3;

    bn的最小值当n=1007即2n=2014时取得,此时bn=-1.