平面向量m与平面向量n垂直
(2a+c)cosB+bcosC=0,
由正弦定理2sinAcosB+sin(π-A)=2sinAcosB+sinA=sinA(2cosB+1)=0
sinA不等于0,cosB=-1/2,B=2π/3
4=a+2c>=2√(2ac),ac
平面向量m与平面向量n垂直
(2a+c)cosB+bcosC=0,
由正弦定理2sinAcosB+sin(π-A)=2sinAcosB+sinA=sinA(2cosB+1)=0
sinA不等于0,cosB=-1/2,B=2π/3
4=a+2c>=2√(2ac),ac