已知:如图,△ABC内接于⊙O,过点B作⊙O的切线,交CA的延长线于点E,角EBC=2角C.求证(1)AB=AC

2个回答

  • 1)

    ∵BE是切线∴∠EBA=∠C

    又∵∠EBC=2∠C

    ∴∠ABC=∠C∴AB=AC

    2)①作AF⊥BC于F,∵AB=AC∴BF=CF,AF延长线过圆心O

    ∵∠EBA=∠C∴tan∠ABE=tan∠C=AF/CF=1/2

    AC/CF=√(AF²+CF²)/CF=(√5)/2

    又∵AB=AC,BF=CF∴AB/BC=AC/2CF=½(AC/CF)=(√5)/4

    ②∵∠ABE=∠C,∠E=∠E∴△ABE∽△BCE

    ∴ AE/BE=AB/BC=(√5)/4所以BE=4/5√5AE

    又∵AE/BE=BE/CE即BE²=AE×CE即 (4/5√5AE)²=AE×(2+AE)

    解之得AE=10/11

    (P.S:附加图一张,图来自参考资料,参考资料的已知、求证与本题相反且②有所不同,2)为纯手打原创)