1)
∵BE是切线∴∠EBA=∠C
又∵∠EBC=2∠C
∴∠ABC=∠C∴AB=AC
2)①作AF⊥BC于F,∵AB=AC∴BF=CF,AF延长线过圆心O
∵∠EBA=∠C∴tan∠ABE=tan∠C=AF/CF=1/2
AC/CF=√(AF²+CF²)/CF=(√5)/2
又∵AB=AC,BF=CF∴AB/BC=AC/2CF=½(AC/CF)=(√5)/4
②∵∠ABE=∠C,∠E=∠E∴△ABE∽△BCE
∴ AE/BE=AB/BC=(√5)/4所以BE=4/5√5AE
又∵AE/BE=BE/CE即BE²=AE×CE即 (4/5√5AE)²=AE×(2+AE)
解之得AE=10/11
(P.S:附加图一张,图来自参考资料,参考资料的已知、求证与本题相反且②有所不同,2)为纯手打原创)