f(0)=|0-a|=|a|=a
g(0)=0+0+1=1
因为f(0)=g(0),所以a=1
f(x)+g(x)=|x-1|+x²+2x+1
(1)当x≥1时,f(x)+g(x)=(x-1)+x²+2x+1=x²+3x
x越大,x²+3x越大,所以[1,+∞)是f(x)+g(x)的单调增区间
(2)当x
f(0)=|0-a|=|a|=a
g(0)=0+0+1=1
因为f(0)=g(0),所以a=1
f(x)+g(x)=|x-1|+x²+2x+1
(1)当x≥1时,f(x)+g(x)=(x-1)+x²+2x+1=x²+3x
x越大,x²+3x越大,所以[1,+∞)是f(x)+g(x)的单调增区间
(2)当x