定义在R上的函数f(x)的图像关于点(-3/4,0)成中心对称,对任意的实数x都有f(x)=-f(x+3/2)

2个回答

  • 由f(x+3/2)=-f(x),得f(x+3)=f((x+3/2)+3/2)=-f(x+3/2)=f(x),则有周期T=3.

    又f(x)的图像关于点(-3/4,0)成中心对称,即f(-3/4+x)=-f(-3/4-x),令x=1/4,得f(-1/2)=f(-1),

    即f(-2+3/2)=-f(-2)=1,则有f(1+3k)=f(-2)=-1,f(2+3k)=f(-1)=1,f(3+3k)=f(0)=-2,其中k是任意整数.则原式=(2007/3)(f(1)+f(2)+f(3))+f(2008)=669*(-2)+(-1)=-1339.