数列{bn}满足bn=(2n-1)/3^n,求前n项和,Tn

1个回答

  • 数列{b‹n›}满足bn=(2n-1)/3ⁿ,求前n项和T‹n›.

    T‹n›=(1/3)+(3/3²)+(5/3³)+(7/3⁴)+.+(2n-3)/3ⁿֿ¹+(2n-1)/3ⁿ.(1)

    (1/3)T‹n›=(1/3²)+(3/3³)+(5/3⁴)+.+(2n-3)/3ⁿ+(2n-1)/3^(n+1).(2)

    (1)-(2)得:(错项相减)

    (2/3)T‹n›=(1/3)+2[(1/3²)+(1/3³)+(1/3⁴)+.+(1/3ⁿ)]-(2n-1)/3^(n+1)

    =(1/3)+(2/3)[(1/3)+(1/3²)+(1/3³)+(1/3⁴)+.+(1/3ⁿֿ¹)]-(2n-1)/3^(n+1)

    =(1/3)+(1/3)[1-(1/3ⁿֿ¹)]-(2n-1)/3^(n+1)

    =(2/3)-1/3ⁿ-(2n-1)/3^(n+1)=(2/3)-2(n+1)/3^(n+1)=(2/3)[1-(n+1)/3ⁿ]

    ∴T‹n›=1-(n+1)/3ⁿ (n=1,2,3,.)