椭圆方程:x²/2+y²=1
设弦与椭圆交点A(x1,y1)B(x2,y2)
代入椭圆方程x²+2y²=2
x1²+2y1²=2
x2²+2y2²=2
两式相减
x1²-x2²+2(y1²-y2²)=0
(x1+x2)(x1-x2)+2(y1-y2)(y1+y2)=0
设中点为M(x,y)
则x1+x2=2x,y1+y2=2y
根据题意(y1-y2)/(x1-x2)=2
所以
2x+2×2y×2=0
x+4y=0
即为所求中点轨迹
椭圆方程:x²/2+y²=1
设弦与椭圆交点A(x1,y1)B(x2,y2)
代入椭圆方程x²+2y²=2
x1²+2y1²=2
x2²+2y2²=2
两式相减
x1²-x2²+2(y1²-y2²)=0
(x1+x2)(x1-x2)+2(y1-y2)(y1+y2)=0
设中点为M(x,y)
则x1+x2=2x,y1+y2=2y
根据题意(y1-y2)/(x1-x2)=2
所以
2x+2×2y×2=0
x+4y=0
即为所求中点轨迹