容易证明,M和N不在直线l上,把M和直线l确定的平面记作平面3,把N和直线l确定的平面记作平面4
可以证明,直线AB垂直平面3,直线CD垂直平面4
假设MN平行直线l,则平面3和平面4重合,则AB与CD必然共面,这与题设矛盾
因此假设不成立,即MN不可能平行直线l
===================
可以在l上取不同的点,得到多个等腰三角形,M为AB中点得到垂直来证明AB垂直平面3
应该能看得懂了吧
容易证明,M和N不在直线l上,把M和直线l确定的平面记作平面3,把N和直线l确定的平面记作平面4
可以证明,直线AB垂直平面3,直线CD垂直平面4
假设MN平行直线l,则平面3和平面4重合,则AB与CD必然共面,这与题设矛盾
因此假设不成立,即MN不可能平行直线l
===================
可以在l上取不同的点,得到多个等腰三角形,M为AB中点得到垂直来证明AB垂直平面3
应该能看得懂了吧